“Pancreas on a Chip” Opens New Doors to Understanding CF-Related Diabetes

Published on
By : dLife Editors

Scientists have created a “human pancreas on a chip” that may allow them to identify the possible cause of a frequent and deadly complication of cystic fibrosis (CF) called CF-Related Diabetes.

The chip is a small, two-chambered device, which features bioengineered human pancreatic organoids (miniature versions of an organ that are made in vitro).

The researchers at Cincinnati Children’s Hospital Medical Center want to see if their device can help people with CF — a genetic lung disease caused by a mutation in the CFTR gene.

The mutation leads to water and salt imbalance on cell surfaces that clog the lungs with thick mucus.

As people with CF get older, they become increasingly at risk for CF-Related Diabetes, according to Dr. Anjaparavanda Naren, the study’s principal investigator and Director of the Cystic Fibrosis Research Center.

Making matters worse, is that until now there hasn’t been an effective way to study CF-Related Diabetes in the lab to look for better treatments.

“Mouse models of CF don’t faithfully recreate CF-Related Diabetes in the lab, and it wasn’t possible to study the disease at the depth we achieved in this study,” says Naren. “Our technology closely resembles the human pancreas and potentially may help us find therapeutic measures to manage glucose imbalance in people with CF, which is linked to increased illness and death.”

The in vitro chip technology can be used to study CF-Related Diabetes and glucose imbalance in specific individuals with the condition, creating the potential for diagnosing different disease manifestations on a highly personalized basis.

The chip can help assay variability in the glucose measures of different people, determine the correlation of glucose levels with the CFTR mutation type, and test small-molecule interventions.

The Connection to CF-Related Diabetes

Although mutations in the CFTR gene are known to cause cystic fibrosis, its role in CF-Related Diabetes is unclear.

To answer that question, the researchers started by isolating pancreatic ductal epithelial cells and pancreatic islets donated by surgical patients.

The ductal organoids were cultured in a transparent dual-chamber, which contained specific biochemical solutions to generate the pancreas-on-a-chip.

Ductal epithelial cells were cultured in the top chamber and pancreatic islet cells were in the bottom chamber, separated by a thin layer of a porous membrane that allowed the different chambers to interact.

The cells grew and expanded into three-dimensional pancreatic organs that mimicked cell-to-cell communications and fluid exchange, similar to the function of a naturally developing human pancreas.

When the researchers tested pancreas-on-a-chip by disrupting CFTR gene expression, it impaired cell-to-cell communication, fluid exchange, and negatively affected endocrine function.

This caused an insulin deficiency and recreated the CF-Related Diabetes disease process similar to that observed in the pancreas of a person.

Researchers say this confirms that the CFTR gene has a direct role in regulating insulin secretion and causing diabetes in people with CF.

Next Steps

The research team will use the devices in a pilot study to test FDA-approved drugs that modulate CFTR gene expression.

The goal will be to determine how well different CFTR drugs can slow or reverse lab-simulated CF-Related Diabetes.

Researchers also think it may be feasible to use the small two-chambered device to study the causes of non-CF-related conditions such as Type 1 and Type 2 diabetes.

Funding support for the study came in part from the National Institutes of Health and the Cystic Fibrosis Foundation.

The study has been published in Nature Communications.

Cincinnati Children’s Hospital Medical Center.


  1. Cincinnati Children’s Hospital Medical Center. (2019, July 16). Human pancreas on a chip opens new possibilities for studying disease: Organoids grown in microfluidic device may help cf patients with diabetes. ScienceDaily. Retrieved July 17, 2019, from www.sciencedaily.com/releases/2019/07/190716073722.htm